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Abstract—Proteins are the workhorses of life and gaining
insight on their functions is of paramount importance for
applications such as drug design. However, the experimental
validation of functions of proteins is highly-resource consuming.
Therefore, recently, automated protein function prediction (AFP)
using machine learning has gained significant interest. Many of
these AFP tools are based on supervised learning models trained
using existing gold-standard functional annotations, which are
known to be incomplete. The main challenge associated with
conducting systematic testing on AFP software is the lack of a
test oracle, which determines passing or failing of a test case;
unfortunately, due to the incompleteness of gold-standard data,
the exact expected outcomes are not well defined for the AFP
task. Thus, AFP tools face the oracle problem. In this work,
we use metamorphic testing (MT) to test nine state-of-the-art
AFP tools by defining a set of metamorphic relations (MRs) that
apply input transformations to protein sequences. According to
our results, we observe that several AFP tools fail all the test
cases causing concerns over the quality of their predictions.

Index Terms—Metamorphic testing, Protein function predic-
tion, Supervised learning

I. INTRODUCTION

A. Proteins and their functions

Proteins are one of the main components of a living body
that are important due to various vital functions they perform
in living cells. Basically, a cell is alive because of the func-
tions of proteins. While our genes encode protein sequences,
proteins determine all other aspects of cell function including
metabolism, structure, transport, signaling, immune defense,
cell division and cell death. Disease processes associated with
hereditary genetic defects ultimately are due to dysfunctions
in the proteins that the genes encode.

Various forms of Alzheimers, Huntingdons, Parkinsons,
cystic fibrosis and hemophilia are all well-known examples
of protein misproduction caused by errors in the underlying
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genetic code [1]–[5]. Lesser-known examples include errors in
the BRCA1 and BRCA2 genes, which are known to increase
a persons risk of developing breast cancer, and errors in the
code of Msh2, which increases a risk of developing colon and
endometrial cancers [6], [7]. Whilst all of the aforementioned
diseases are vastly different in their epidemiological back-
ground, one element they all have in common is a disruption
of a proteins ability to correctly perform its function.

Gene Ontology (GO) is a framework used for describ-
ing protein functions [8]. Gene Ontology is composed of
different classes (or terms), each of which demonstrates a
single function, and the hierarchical relations between the
classes. Within the GO term hierarchy, child terms are more
specialized than their parent terms, e.g., tyrosine metabolic
process is a child term of metabolic process. In addition,
GO relations can be is-a relations, part-of relations, etc. For
example, the protein BRCA1 HUMAN has a list of functions
such as androgen receptor binding (GO:0050681), damaged
DNA binding (GO:0003684), etc.

Gene Ontology is composed of three sub-ontologies: the
molecular function (MF) ontology, which describes various
molecular activities, the biological process (BP) ontology,
which describes various processes that a protein may be
involved with and the cellular component (CC) ontology,
which describes the localization of proteins. The official Gene
Ontology website1 maintains not only the ontology but the
annotations using the ontology (the gold-standard functional
annotations) for a large collection of proteins from many
different organisms [8]. Many of these annotations are exper-
imentally validated through wet-lab assays. These annotations
follow the “true path rule” which means annotations to a
certain term imply annotations to all of its ancestors [9].

However, how biologists identify such function has been
drastically altered over the last decade, thanks to the next

1http://www.geneontology.org/
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generation sequencing revolution. Following the completion
of the human genome project, DNA sequencing technology
has developed at such a rate that it far surpassed Moores
law [10]. The most striking example of this is the cost of
sequencing a human genome. 15 years ago, the completion
of the human genome project was announced. This project
was a large international collaboration which took 13 years
and $2.7 billion to complete [11]. In a clinical setting today,
the cost of whole genome sequencing has been reported to
be approximately $1,906-$24,810 and it could be sequenced
and assembled in a matter of weeks [12], and based on the
genetic code, protein sequences can be directly inferred from
gene sequences. The exponential growth of available gene and
protein sequence data presents a whole new suite of challenges
to today’s biologists rendering the gold-standard Gene Ontol-
ogy annotations incomplete. It is reported that only a small
percentage of known proteins have experimentally validated
annotations, while many among them are considered incom-
plete [13]. This has highlighted the need for high-throughput
approaches for functional annotation and has consequently
fostered collaborations between a range of disciplines, most
notable of which is computer science.

B. Automated Protein Function Prediction (AFP)

Through the development of numerous algorithms and tools,
collaborations with bioinformaticians and computational biol-
ogists have altered the way and speed in which biologists can
make sense of the deluge of genomic data. One area that has
benefited significantly from such developments is automated
protein function prediction (AFP). As mentioned above, previ-
ous routes of ascertaining protein function required extensive
wet-lab investigations, often only focusing on one protein at a
time and could be considered low throughput [14]. Whilst such
experiments are still required for validation, computational
protein function prediction tools have significantly changed the
way biologists conduct protein function investigations. These
high throughput approaches have been essential for modeling
the impact that errors in the genetic code have upon the
function of proteins and how this impacts the health of an
organism.

Automated function prediction tools typically take a protein
sequence as their input and output a set of predictive GO terms
corresponding to their functional categories. These protein se-
quences are stored in the text-based FASTA2 format where the
protein sequence is preceded by a description line, identified
by the “>” symbol.

These tools typically make their predictions using var-
ious techniques such as sequence matching that employ
the sequence alignment to extract the functions of similar
proteins, protein structure-based methods, genomic context-
based methods, phylogenomics-based methods, protein-protein
interaction-based methods, data integration methods, and text
mining-based methods [14].

2https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE TYPE=
BlastDocs&DOC TYPE=BlastHelp

Sequence-based methods match a large collection of se-
quences with a target protein sequence, and using this compar-
ison they determine whether the sequences under comparison
share a common ancestor. One subgroup of sequence-based
methods is the methods that fall in the same category but
do not directly predict functions of proteins, but they provide
information about protein sequences by extracting features
which can be used by other machine learning methods [15]–
[18].

Protein structure-based methods try to find a level of sim-
ilarity using two given protein structures which provides the
transfer of functional annotations between proteins, and the
similarity can be detected using the entire structure or only a
part of the structures [19], [20].

Genomic context-based methods rely on the knowledge that
the location of the gene which is encoding a query protein is
prominent information that can be used for function predic-
tion [21], [22]. Evolutionary relationships are also exploited
between organisms to find functional similarities between
genes in phylogenomics-based methods [23], [24].

Interaction-based methods utilize protein-protein interaction
(PPI) networks in which PPI data is represented as vertices
(proteins) and edges (direct bindings). These interactions can
be utilized to find functional relationships, and to achieve this
goal, graph-theoretic methods and algorithms can be employed
to predict functions of proteins [25], [26].

The data integration-based methods are mostly based on
machine learning in which features generated from different
biological sources are combined and used for training a
machine learning model [27], [28].

Text mining-based methods have been employed for the
analysis of biomedical literature for the problem of protein
function prediction with the idea that the large amount of
information in the literature can link proteins with each other.
Therefore, they can be utilized to increase the size of labeled
data for the task of training and evaluation [29], [30].

Critical Assessment of protein Function Annotation (CAFA)
is a community-wide large-scale evaluation of AFP tools
organized by the Function Special Interest Group3. At the
time of writing this paper, CAFA2 was the latest challenge
where its results of evaluation were publicly available [31].
Many tools were presented in CAFA2, and they were evaluated
using different criteria such as macro-AUROC, F-max, and
Smin [31].

C. Quality Assurance of AFP tools

Despite the plethora of AFP tools and comprehensive CAFA
evaluation results, selecting a tool from this list of top perform-
ing AFP tools to perform experiments or research would be
very challenging as described below. One way to select a tool
is randomly picking a few tools, feeding well-known protein
sequences into the tools, and comparing the outputs with the
experimentally validated GO terms, which are the results of a

3https://biofunctionprediction.org/
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physical characterization of a gene product that has supported
its association with the GO term4.

However, using a few tools and sequences in the above
specified manner, users would observe that each tool provides
different set of output GO terms, and only a few terms would
be in common with the experimentally validated terms. Fig. 1
shows the distribution of predicted GO terms using three
randomly selected top performing CAFA2 tools in comparison
with the corresponding experimentally validated terms of the
well-known protein Tyrosinase, an enzyme that hydroxylates
tyrosine as the first step in melanin synthesis5. The distribution
of GO terms in both the Molecular Function and Biological
Process ontologies shows that only one of the predicted GO
terms is in common between the three tools and the experi-
mentally validated terms. The next important observation on
Biological Process ontology is that one of the tools returns
1199 GO terms, whereas another tool outputs only four GO
terms for the same protein. Moreover, as mentioned above, the
experimentally validated terms set is incomplete. Therefore,
these observations show why it would be challenging for a
biologist to select a tool for their research, as well as for a
developer to test the tools that they develop.

Yet, protein function prediction tools form an essential
part of the vast majority of protein function investigations.
Designed to complement rather than replace experimental
analysis, these tools are often employed to direct the focus
on experimental investigations. Failure of the tools to perform
accurately could lead to lengthy, expensive and ultimately
fruitless experimental investigations. Thus, it is essential to
develop cost effective approaches for systematically testing
AFP tools.

In this study, we apply metamorphic testing (MT) for the
quality assurance of AFP tools. We develop novel meta-
morphic relations (MRs) using transformations to protein
sequences that are typically used as inputs to AFP tools. We
use these MRs to test nine top performing AFP tools from
CAFA2. The results of this study show that several AFP tools
fail all the test cases and only at most two tools pass all the
test cases. Therefore this study has implications for both the
the developers and the users of these AFP tools.

II. METAMORPHIC TESTING

In complex systems, such as AFP tools, it is practically
difficult to determine whether the output provided by the
system for a given input is correct. This is known as the oracle
problem [32]. MT can be used to test programs that face the
oracle problem [33]. The MT process involves deriving MRs
and generating test cases based on those MRs. A MR is a
relation derived from the specification of the program under
test and specifies how the output would change according to a
specific change made to the input. Source test cases are typi-
cally derived using a traditional test case generation approach
such as random test generation. Typically, the Follow-up test

4http://www.geneontology.org/page/guide-go-evidence-codes
5Diagrams generated by https://github.com/tctianchi/pyvenn

cases are derived by applying the transformations specified in
the MR to the source test case and/or source outputs [34].
Then, the source and follow-up test cases are executed and
outputs of these test cases are used to verify whether MR was
violated or not. The violation of a MR indicates faults in the
program.

Fig. 2 shows how MT is applied to a sorting program. This
sorting program arranges a random set of numbers provided
as input in the ascending order. A MR derived for the sorting
program states that when the original set of numbers are
shuffled and used as an input to the program, the output must
be equal to the original output. In order to conduct MT on
the sorting program using this MR, the source test case can be
created by generating a set of random numbers and the follow-
up test case can be created by shuffling the source test case.
A fault is detected in the sorting program if the outputs from
the source and follow-up test cases are not equal as defined
in the MR [34].

III. METAMORPHIC TESTING FOR AFP TOOLS

The first step of applying MT for testing a given program
is defining MRs. The most commonly used approach to define
MRs is looking at the changes that you can make to the input
and whether those changes would cause predictable changes
in the output. However, defining MRs for AFP tools should be
done with caution because, we cannot make random changes
to the input sequences since the input sequence represents a
specific protein and such changes would cause the sequence
to loose its meaning. Any changes that we make to the
input sequence should be made based on relevant biological
knowledge as we discuss below. MRs are designed to achieve
better understanding of the software .

We define a MR using the canonical sequences and their
variants. A canonical sequence is defined as the “standard”
sequence, generally based on its prevalence in the population
and its similarity to orthologous sequences in other species.
The term orthologous sequence is used in biology to refer
to similar genetic sequences that are found in other species.
Generally speaking, these orthologous genetic sequences are
thought to maintain a similar function across the species it
can be found in. All other sequences are hence considered
variants of the canonical sequence. These sequence variants
include genetic polymorphisms, disease-associated mutations
and RNA editing events such as alternative splicing. Both the
canonical sequence and the variants are generally listed under
one single entry in the UniProt/Swissprot databases6 (which
are the primary knowledge bases on proteins).

For testing AFP tools, we define a MR in the broad sense
that says there should be a change in the output GO terms
between the canonical proteins and their corresponding well-
studied variants. Note that this assumption does not always
hold true for all proteins, but we have carefully chosen only the
protein examples that satisfy our MR. Thus, this MR imposes
restrictions on the source test cases that can be used. More

6https://www.uniprot.org/



Fig. 1: Distribution of output GO terms for the protein TYRO on Biological Process and Molecular Function ontologies

Fig. 2: MT example for sorting program

specific instances of this MR can be created by observing the
characteristics of different variants. For instance, if the source
test case is the canonical sequence of the protein Tyrosinase,
and the follow-up test case is a disease variant of this protein
which causes Albinism (OCA1A), biological knowledge entails
that the output GO terms of the canonical sequence and the
disease variant must be different.

We also note that the change in the output mentioned above
is measured using the set difference. In other words, if the set
of GO terms for the variant sequence is different from the
set of GO terms for the canonical sequence, it is considered
a change. In this setting, a GO term is only a match (i.e.
equal) to that term itself, but not to any of its ancestors and or
descendants. This interpretation is consistent with the CAFA
evaluation setup in which tools are penalized for predicting
a GO term that is an ancestor or a descendant of the gold
standard GO term annotation [31].

Fig. 3: Architecture of the Metamorphic Testing system on
AFP tools

We use this MR to conduct MT on a given AFP tool by
performing the following steps (Fig. 3 depicts this process):

1) Running the program with the canonical sequence (i.e.
source test case) and getting Os as the output. The
source test case is a FASTA sequence and Os will be a
set of GO terms.

2) Generating a follow-up test case using the source case,
and executing the program with the follow-up test case
and getting Of . The follow-up test case is also a FASTA
sequence derived from a known variation of the source
test case, and the output is a set of GO terms as well.

3) Checking whether the MR defined above holds for Os

and Of . In this example, the MR holds if there is a
change in the list of output GO terms, i.e. additions,
deletions, etc. If the expected change is satisfied, it will
be a pass, otherwise, it will be a fail.

A. AFP Tool Selection Criteria

In order to identify a suitable set of AFP tools to apply
MT, we started with the 28 top-performing tools from the
CAFA2 challenge. From these 28 tools, most are not publicly
available, and some are very hard to setup and run. So, we
selected tools that can be set-up for execution by spending a
maximum of thirty minutes by a graduate student. At the time
of this investigation, only three tools were publicly available
and/or worked as advertised. As we wanted to perform the
experiments on as many tools as possible, we contacted
authors of the remaining 25 tools, requesting them to feed the
sequences used as source and follow-up test cases to their tools
and provide us with the outputs. Twelve authors responded
positively, and 6 out of 12 authors sent us the outputs. Thus,
in our evaluation we used the following nine tools: EVEX [29],
PFP [15], CONS [16], GORBI [23], CBRG [24], ProFun [25],
PANNZER [18], Argot2 [17], and INGA [27]. Fig. 4 depicts
above mentioned work-flow of selecting the nine tools used
in the evaluation.

B. Source and Follow-up Test Cases

We used 18 sequences from three carefully selected well
known proteins as source and follow-up test cases for testing



Fig. 4: The flow of selection of the tools

TABLE I: The List of Selected Proteins

Protein Name UniProt Id
TYRO Human Tyrosinase P14679
IL2RG Human Cytokine receptor common subunit

gamma
P31785

TLR4 Human Toll-like receptor 4 O00206

the AFP tools using the previously defined MR. These proteins
are shown in Table I. Tyrosinase (TYRO) and interleukin-2
receptor gamma (IL2RG, also termed the common gamma
chain) were selected, because they have well characterized
and highly defined functions. Importantly, point mutations
(modification to a single location in the sequence) in the
TYRO and the IL2RG cause a loss of a particular protein
function that directly results in a clinical disease, i.e., oculo-
cutaneous albinism and severe combined immunodeficiency,
respectively. Toll-like receptor 4 (TLR4) likewise is a very
well characterized innate immune receptor that mediates acti-
vation of pro-inflammatory signaling pathways upon binding
of bacterial material. With respect the three selected proteins,
changes in protein functions due to an altered amino acid
sequence are expected to result in changes in GO terms
for Molecular Function and Biological Process. We do not
anticipate alterations in Cellular Component ontology.

These three proteins have a large numbers of variants
associated with each of them. For example, TYRO has 99
variants involved in oculocutaneous albinism type A (OCA1A)
alone, therefore, it not feasible and cost effective to execute
the tools using all these variants.

We selected the number of variants to execute for each
protein proportional to its sequence length. Thus, for TYRO
more variants would be selected for execution compared to
IL2RG since TYRO sequence is longer than IL2RG, i.e. we
selected seven variants for TYRO, four variants for IL2RG,
and four variants for TLR4. In the next step, we divide the
sequence into equal segments proportional to the number of
selected variants, i.e. for TYRO we divide the sequence into

TABLE II: Variants Selection Criteria

Protein Identifier Position Change
TYRO Human P14679 Canonical

TYRO Variant 1 VAR 007652 47 G - D
TYRO Variant 2 VAR 007658 81 P - L
TYRO Variant 3 VAR 007667 217 R - Q
TYRO Variant 4 VAR 007671 299 R - H
TYRO Variant 5 VAR 007680 373 T - K
TYRO Variant 6 VAR 007690 419 G - R
TYRO Variant 7 VAR 007692 446 G - S
IL2RG Human P31785 Canonical

IL2RG Variant 1 VAR 002668 39 D - N
IL2RG Variant 2 VAR 002681 153 I - N
IL2RG Variant 3 VAR 002690 226 R - C
IL2RG Variant 4 VAR 002701 285 R - Q

TLR4 Human O00206 Canonical
TLR4 Natural 1 526 N - A
TLR4 Natural 2 711 D - K
TLR4 Splice 1 O00206-2 Isoform 2
TLR4 Splice 2 O00206-3 Isoform 3

seven equal segments. Next, from each segment we pick the
variant with the largest number of associated publications,
which provides more experimental evidence for the existence
of the variant. Eventually, the sequences consist of the canon-
ical, i.e. standard, sequence and the sequences of variants as
follows:

• TYRO HUMAN: (Canonical sequence + 7 disease vari-
ants)

• IL2RG HUMAN: (Canonical sequence + 4 disease vari-
ants)

• TLR4 HUMAN: (Canonical sequence + 2 splice variants
+ 2 natural variants)

Table II demonstrates the exact changes in the canonical
sequences of proteins and their corresponding positions in the
sequence. For each protein, we use the canonical sequence as
the source test case and each of the variant sequences as the
follow-up test case. Therefore, we have 15 pairs of source and
follow-up test cases.



(a) Molecular function ontology

(b) Biological process ontology

Fig. 5: Overall test results

C. Test Execution

The next step in applying MT to AFP tools is to feed the
test cases into the tools, and checking whether the MRs hold
for each execution. Therefore, we have nine tools and 15 pairs
of source and follow-up test cases.

For each pair of source and follow-up test cases, we store
the output GO terms for the Molecular Function and Biological
Process ontologies separately, and compare the GO terms of
Os and Of , and report the results of different ontologies
separately.

IV. RESULTS

Figs. 5a and 5b show the results of executing the tools
with 15 test case pairs on Molecular Function ontology and
Biological Process ontologies, respectively. Each pie chart
shows the number of passes and fails of the 15 test case pairs
for a given tool. As shown in Fig. 5a, only tool H passes all
the test cases. Four out of the nine tools fail all the test cases.
This phenomenon can happen if the tools are not designed to
detect variations in the protein sequence. The rest of the tools
have a mix of passes and fails.

We executed the same 15 test case pairs (also known as
metamorphic Group of Inputs [35]) on the Biological Process
ontology as well. As shown in Fig. 5b, two tools, G and H
passed all the test cases. Four tools, A, B, E and F failed
all the test cases. Interestingly, these are the same tools that
failed all the test cases for the Molecular Function ontology.
This further validates our hypothesis that these four tools are
not designed to detect variations in protein sequences.

Next we analyze the test results at the individual protein
sequence levels for the two ontologies. Figs. 6a, 6b, and 6c
show the pie charts of the test results for the Molecular
Function ontology for individual protein sequences TYRO,
IL2RG and TLR4, respectively. As expected, tool H passed

(a) TYRO

(b) ILR2G

(c) TLR4

Fig. 6: Test results at the protein level for the molecular
function ontology

all the test cases. Further, tools D and G passed all the test
cases for IL2RG and TLR4. However the performance of tool
G on TYRO is not satisfactory as shown in Fig. 6a. Thus, in
addition to tool H, tool D could be another option to use when
working with the Molecular Function ontology.

Similarly, Figs. 7a, 7b, and 7c show the test results for the
Biological Process ontology for the three protein sequences.
As expected, tools G and H passed all the test cases for this
ontology. Besides them, tool D passed all the test cases for
IL2RG and TLR4 and also performed satisfactorily on TYRO.
Thus, tool D can be another option to use when working with
the Molecular Function ontology.

Next, we investigate whether making predictions on certain
protein sequences is harder than the others. Figs. 8a and 8b
show the percentage of tools that successfully predicted the
changes for each test case pair (named with the corresponding
variant used in the follow-up test case) for the Molecular
Function ontology and the Biological Process ontology, re-
spectively. We observe that for both ontologies, higher per-
centage of tools passed the test cases for the variants of TLR4
compared to the other two protein sequences. This observation
may suggest that the AFP tools predict the functions of natural
and splice variants better than disease variants. More test
executions are needed to confirm this hypothesis.



(a) TYRO

(b) ILR2G

(c) TLR4

Fig. 7: Test results at the protein level for the biological
process ontology

V. RELATED WORK

Srinivasan et al. worked on applying MT to LingPipe,
a tool for processing text using computational linguistics,
which is often used in bioinformatics for bio-entity recognition
from biomedical literature [36]. The authors proposed 10
novel MRs and the fault detection effectiveness of each of
the MRs was evaluated using mutation testing. Lundgren et
al. examined the effectiveness of MT for testing a genome
alignment tool BBMap [37]. The experiment results showed
that MT is effective in identifying subtle faults compared to
pseudo-oracles. Ramanathan et al. used MT to test a workflow
of epidemiological models [38]. They showed that MT can
be useful when mathematical models fail. Pullum and Ozmen
showed that MT could be effective in testing epidemiological
models [39]. They used a differential equation and agent-
based models for generating MR-transformed parameter val-
ues. Chen et al. used MT to test two open-source bioinformat-
ics programs [40]. The first program GNLab, a tool for large-
scale analysis and simulation of gene regulatory networks. The
second tool SeqMap deals with mapping a short sequence that
reads with a reference genome. The mutants were generated
for the GNLab and SeqMap tools. The MRs had different fault
finding abilities and the mutants were violated by at least one
MR. The MRs related to the change in the nodes in GNLab
network were less effective than the other MRs. Eleni et al.

(a) Molecular function ontology

(b) Biological process ontology

Fig. 8: Percentage of tools passed for each source and follow-
up test case pair

conducted metamorphic testing on three commonly used NGS
(Next Generation Sequencing) short-read alignment programs:
BWA, Bowtie, and Bowtie2 [41]. The results show that the MR
created by permuting reads and addition of reads does not hold
for BWA. Also MRs that reverse complement and extend the
read fail on both bowtie and BWA.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we applied MT for testing nine AFP tools.
We use the biological knowledge about proteins and their
variants to define an MR that specifies that there should be
a change in the predicted GO terms between the canonical
protein sequence and their variants. We used this MR to create
source and follow-up test cases using carefully selected protein
examples such as disease variants.

Our results indicate that several tools do not pass any of
the test cases that we used in this study. This is surprising
considering the fact that all of these tools (except one) are
among the top performing tools in CAFA2. The only tool for
which this failure is to be expected is tool E as it appears
this tool was designed specifically for the use of bacterial and
archael genomes only (since we used only human data for
testing).

However, it is also possible that these tools are not designed
to handle variants. If that is the case, such limitations should



be documented such that users of the tools are aware of the
limitations [35]. This would ensure that the biologists, who
are the intended primary users of these tools, use them for
the appropriate use cases. This is of utmost importance due
to the fact that predictions from many of these tools will be
used to guide the wet-lab experiments. Predictions lacking in
quality could alter the research directions, rendering loss of
resources and most importantly can have a significant impact
on healthcare applications.

In the future, we plan to develop more MRs for this domain
which uses biological knowledge that will incorporate different
orthogonal aspects of AFP such as functional characteristics
unique to different species. Further, we plan to develop an
expanded test suite by exploring MRs for cellular component
sub-ontology and Human Phenotype ontology (which is an-
other structured vocabulary for describing phenotype abnor-
malities associated with human diseases), and by employing
different types of protein examples. We will also work with
the AFP community to increase the number of tools to be
tested. Eventually, we will develop a testing framework which
is readily available for the users and developers in this domain.

ACKNOWLEDGMENTS

We thank the PIs and teams that provided us with the results
of their tools including EVEX (PI: Filip Ginter), Orengo-
FunFams (PI: Christine Orengo), SIFTER (PI: Steven Bren-
ner), Jones-UCL (PI: David Jones), Paccanaro Lab (PI: Alberto
Paccanaro), ProFun (PI: Jianlin Cheng), PANDA (PI: Zheng
Wang), CBRG and GORBI (PI: Christophe Dessimoz), FANN-
GO (PI: Predrag Radivojac), CONS and PFP (PI: Daisuke
Kihara). We also would like to thank Dr. Iddo Friedberg and
Dr. Rachael Huntley for insightful discussions.

REFERENCES

[1] G. R. Cutting, “Cystic fibrosis genetics: from molecular understanding
to clinical application,” Nature Reviews Genetics, vol. 16, no. 1, p. 45,
2015.

[2] M. Ferreira and J. Massano, “An updated review of Parkinson’s disease
genetics and clinicopathological correlations,” Acta Neurologica Scan-
dinavica, vol. 135, no. 3, pp. 273–284, 2017.

[3] C. M. Karch, C. Cruchaga, and A. M. Goate, “Alzheimers disease
genetics: from the bench to the clinic,” Neuron, vol. 83, no. 1, pp. 11–26,
2014.

[4] B. Prasad, “Hemophilia: Genetics, diagnosis and treatment,” INTERNA-
TIONAL JOURNAL OF SCIENTIFIC RESEARCH, vol. 7, no. 2, 2018.

[5] J.-M. Lee, V. C. Wheeler, M. J. Chao, J. P. G. Vonsattel, R. M. Pinto,
D. Lucente, K. Abu-Elneel, E. M. Ramos, J. S. Mysore, T. Gillis
et al., “Identification of genetic factors that modify clinical onset of
Huntingtons disease,” Cell, vol. 162, no. 3, pp. 516–526, 2015.

[6] D. Trujillano, M. E. Weiss, J. Schneider, J. Köster, E. B. Papachristos,
V. Saviouk, T. Zakharkina, N. Nahavandi, L. Kovacevic, and A. Rolfs,
“Next-generation sequencing of the BRCA1 and BRCA2 genes for the
genetic diagnostics of hereditary breast and/or ovarian cancer,” The
Journal of molecular diagnostics, vol. 17, no. 2, pp. 162–170, 2015.

[7] R. Sehgal, K. Sheahan, P. R. O’Connell, A. M. Hanly, S. T. Martin,
and D. C. Winter, “Lynch syndrome: an updated review,” Genes, vol. 5,
no. 3, pp. 497–507, 2014.

[8] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig et al., “Gene
Ontology: tool for the unification of biology,” Nature genetics, vol. 25,
no. 1, p. 25, 2000.

[9] S. Y. Rhee, V. Wood, K. Dolinski, and S. Draghici, “Use and misuse of
the Gene Ontology annotations,” Nature Reviews Genetics, vol. 9, no. 7,
p. 509, 2008.

[10] R. R. Gullapalli, K. V. Desai, L. Santana-Santos, J. A. Kant, and M. J.
Becich, “Next generation sequencing in clinical medicine: Challenges
and lessons for pathology and biomedical informatics,” Journal of
pathology informatics, vol. 3, 2012.

[11] N. H. G. R. Institute, “The Human Genome Project completion: fre-
quently asked questions,” 2010.

[12] K. Schwarze, J. Buchanan, J. C. Taylor, and S. Wordsworth, “Are
whole-exome and whole-genome sequencing approaches cost-effective?
a systematic review of the literature,” Genetics in Medicine, 2018.

[13] G. O. Consortium et al., “The Gene Ontology resource: 20 years and
still GOing strong.” Nucleic acids research, 2018.
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