
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-7281-1867-3/19/$31.00 ©2019 IEEE 1907

RNA Transcript Assembly Using Inexact Flows

1st Lucia Williams
Gianforte School of Computing

Montana State University
Bozeman, USA

luciawilliams@montana.edu

2nd Gillian Reynolds
Gianforte School of Computing

Montana State University
Bozeman, USA

gillian.reynolds@student.montana.edu

3rd Brendan Mumey
Gianforte School of Computing

Montana State University
Bozeman, USA

brendan.mumey@montana.edu

Abstract—RNA-Seq technology allows for high-throughput,
low cost measurement of gene expression. An important step
in this process is the assembly of mRNA transcript short reads
into full transcripts. The problem can be viewed as a flow
decomposition problem in which the objective is to minimize
the number of path flows needed to represent a given flow.
In this work we relax the edge flow constraints to allow for
some uncertainty in their measurement. We formulate this
as the Inexact Flow Decomposition problem and propose an
algorithmic strategy to solve it. In practice, real biological data
has measurement errors and so experimentally-derived edge-
weighted splice graphs are often not flows. The proposed method
is the first approach to this problem that explicitly controls the
error allowed on each edge in these graphs in order to achieve
a flow. In an intermediate step, the method solves an exact flow
decomposition instance; if a greedy method is used for this step,
the overall running time is O(|E|2|V |2 + |P |3), where P is the
solution found to the flow decomposition instance. Preliminary
results on simulated biological data sets show that in many cases
the ground truth paths can be recovered at approximately correct
abundances, even with noisy input data.

Index Terms—RNA sequencing, flow networks, transcript as-
sembly, RNA splicing

I. INTRODUCTION

RNA-Seq is a powerful sequencing technology that allows

for both the discovery and quantification of expressed RNA

transcripts [4]. One of its primary applications is as a low cost

measurement of gene expression [31] under a variable set of

conditions such as developmental stages, time, disease states,

cell type and stimuli [11]. Alongside the identification of reg-

ulatory activity, RNA-Seq may also be used to identify small

and long non-coding regulatory RNAs, infer gene structures

and identify fusion and alternatively spliced transcripts [6],

[15], [18], [20].
Each of these applications provides unparalleled insight into

the complexity of the underlying gene regulation responsible

for phenotypic diversity, and each comes with their own

suite of computational challenges. One of the most significant

challenges of RNA-seq analysis is the accurate reconstruction

of transcript sequences from short-read sequencing technolo-

gies, which have dominated the sequencing market since the

introduction of second generation sequencing technology.

Supported provided by US National Science Foundation grant DBI-1759522
and DBI-1661530.

As such, much effort has been placed into the development

of methods capable of transcript assembly from short reads.

Two of the most popular tools are Cufflinks [29] and StringTie

[24]. Cufflinks, the older of the two methods, represents the

relationship between aligned reads using an overlap graph.

This graph is decomposed into a set of transcripts using

minimum path cover. Transcript abundances are then estimated

using a maximum likelihood approach. StringTie, on the other

hand, uses read data to construct a splice graph, and chooses

both transcripts and their abundances using a heaviest-path

approach.

In this work, we describe a new way of extracting tran-

scripts and their abundances from a splice graph built from

short read data. Assuming the splice graph is a flow, recent

work [13], [27] has modeled this task as the Flow Decomposi-

tion problem, and sought efficient heuristics [27] and improved

theoretical approaches such as fixed parameter tractable (FPT)

algorithms [13] to solve it. In the splice graph model, nodes

are subsequences of a gene (exons), and weights (flows) on

edges indicate a measurement of the number of times that

the source and target exons are observed consecutively in

the sample. By recovering the minimum set of weighted

paths to decompose the flow on the graph, these algorithms

find a likely set of expressed transcripts, along with their

weights. It is assumed that the smallest number of transcripts

that could have generated the data is the best solution; this

assumption was validated in [13]. Here, we extend this model

to account for uncertainty in the sample measurements. There

are numerous sources of uncertainty, biases and errors that

plague each step of an RNA-Seq experiment. Prior to splice

graph construction, these sources include sampling, library

preparation, base-calling, read preprocessing and spliced read

alignment [5], [8], [16], [17], [23], [32]. Because of these

errors, a measured splice graph is unlikely to be a flow; thus,

in order to uncover transcripts and their quantities from data,

an error-correction model must be applied to generate a flow

network, which can then be decomposed into paths (isoforms)

and weights (abundances).

Rather than assign an exact weight to each edge, we assign

an interval of possible weights, thereby accounting for possible

errors in measurement. We then seek a minimal set of paths

to explain these intervals. We model this as the Inexact
Flow Decomposition (IFD) problem and formalize it in §III.

Additionally, we give a method for applying IFD to find source978-1-7281-1867-3/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1908

and sink nodes in the splicing graph. In general, IFD may be a

more realistic model for many problems currently modeled as

flow decomposition or similar problems, because it explicitly

accounts for uncertainty in measurements.

II. RELATED WORK

The Flow Decomposition problem has been studied since

2008, when it was introduced to model routing in telecommu-

nication networks [30]. While many algorithms for producing

a flow on a network generate a decomposition of the flow

into paths in order to find the solution (e.g., the augment-

ing paths of the Ford-Fulkerson algorithm), the set of these

paths is not generally minimal. It has been shown that Flow

Decomposition is NP-hard [30], even when the flow values

are chosen from a small set of possible values [12]. The only

known approximation algorithm for Flow Decomposition is

given in [22] and gives solutions within Llog(fmax) log(fmax)
of optimal, where L is the longest s-t path in the graph,
and fmax is the maximum flow on any edge. A number of

simple heuristics have been proposed [30], and while they per-

form poorly on carefully constructed inputs [12], the method

of choosing and removing the s-t path with greatest flow
(“Greedy-Width”) was arguably the best-performing practical

algorithm until 2016, when the “Catfish” algorithm [27] was

published. The main idea of this method is to apply path-

preserving transformations to the input graph in order to

reduce an upper bound on the number of solutions needed;

then Greedy-Width is run on the transformed graph. Catfish

performs very well on simulated RNA transcript assembly

data, where the true number of paths to be recovered is

almost always between 1 and 10. More recently, a fixed-
parameter tractable (FPT) algorithm was developed [13], that

gives similar accuracy and running times on the same data

sets used in [27], although it becomes impractical for larger

inputs.

A number of RNA-Seq assembly tools use flow decom-

position as a core component of their methods. The first

RNA-seq tool to utilize minimal path flow decomposition to

solve the transcript assembly and quantification problem was

Traph [28]; this work also considers error-correction in the

experimentally-measured splice graph, by first determining a

flow that best fits the data. Other tools such as Scallop [26]

do not explicitly solve a flow decomposition problem, but

do seek parsimonious sets of paths through splice graphs. A

very recent tool called Ryuto [9] builds upon the methods

developed by [28] and [26] and was able to reduce the number

of false positive transcripts identified while finding more true

transcripts when compared to Scallop.

III. PRELIMINARIES

An inexact flow network is comprised of a network G =
(V,E), where V is a set of vertices and E is a multiset

of directed edges; V contains a designated source vertex s
and a designated sink vertex t. |V | = n and |E| = m.
Additionally, each edge e ∈ E has an associated flow interval

Ie. Flow intervals are either bounded or unbounded. Bounded

exon 1 exon 2s
[7,11]

[2,4]

[9,10]
exon 3 exon 4 t

[10,12] [9,13] [8,11]

[2,5]

(a) An inexact flow network representing a gene with four exons.

exon 1 exon 2s exon 3 exon 4 t

exon 2s exon 3 t

(b) An example decomposition of the inexact flow network into two
paths, representing two transcripts. Assigning the first transcript weight
10 and the second transcript weight 2 satisfies Equation 1.

exon 1 exon 2s exon 3 exon 4 t

texon 2s exon 3 exon 4

texon 1 exon 2s exon 3

(c) An example decomposition of the inexact flow network into three
paths, representing three transcripts. Assigning the first transcript
weight 9 and the second and third transcripts weight 1 satisfies
Equation 1.

Fig. 1: An example inexact flow network and two possible

decompositions of it.

flow intervals have the form [le, ue], where 0 ≤ le ≤ ue.

Unbounded flow intervals have the form [le,∞), where 0 ≤ le.
We use unbounded edges to identify a source and sink if

they are not known; see §V-C. A path flow decomposition

for an inexact flow network consists of set of s-t-paths
P = {p1, . . . , pk} and associated positive path flow weights,
w = (w1, . . . , wk) such that for each edge e

[f(e) �
∑

i:e∈pi

wi] ∈ Ie. (1)

We specify each path pi by its ordered list of edges, where
pi[k] refers to the k

th edge along pi.

Any path flow decomposition of a splice graph G represents
a set of transcripts and their abundances that could have

generated the reads used to construct G.

In this work, we restrict attention to the case where the flow

interval bounds 0 ≤ le ≤ ue and the path weights wi > 0 are
integers. The inexact flow decomposition (IFD) problem is to
find a path flow decomposition (P,w) such that |P | = k is
minimized. Among all solutions (P,w), where |P | = k, we
seek those with minimum total flow F =

∑
i wi. Figure 1

shows an example inexact flow network representing a gene

with four exons, along with an optimal decomposition of the

network into two paths and a non-optimal decomposition of

the network into three paths.

Lemma 1: Let (P ∗, w∗) be an optimal solution to IFD. For
each pi ∈ P ∗, there exists an edge e ∈ pi such that f(e) = le.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1909

Proof: Suppose there exists pi ∈ P such that for every

edge e ∈ pi, f(e) > le. Then the flow value wi of pi can be
reduced by 1, contradicting the optimality of (P ∗, w∗).
The upper bound on the fixed-weight version of the prob-

lem, given in [30], applies to the interval version as well.

Lemma 2 (Upper bound on optimal solutions): k∗ ≤ m −
n+ 2.

Proof: First, note that (P ∗, w∗) corresponds to some
flow on the graph G. By Proposition 4 of [30], the paths
in a minimal decomposition of an exact flow graph must be

linearly independent. Then, the number of paths in an optimal

decomposition of the flow graph is upper bounded by the

number of linearly independent paths in the graph. As in

the proof of Proposition 9 of [30], we let G0 be G with an

additional edge from t to s. Then, by Theorem 1, Chapter 2

of [3], the maximum number of independent cycles in G0 is

(m+ 1)− n+ 1. So, the total number of independent cycles
in G is m− n+ 2. Thus, k∗ = |P ∗| ≤ m− n+ 2.
We note that this upper bound may be improved by exclud-

ing edges that will not be used in a solution to IFD.

Lemma 3: The maximum flow on any edge in an optimal

path decomposition is bounded above by

B = (m− n+ 2)max
e

le. (2)

Proof: By Lemma 1, the flow on a path in any opti-

mal path decomposition (P ∗, w∗) equals some le value. By
Lemma 2, there are at most m − n + 2 paths in P ∗. Thus,
f(e) ≤ (m− n+ 2)maxe le for any edge e ∈ E.
Lemma 3 shows that we can replace unbounded flow

intervals with bounded ones, so we can assume that all flow

intervals are bounded in the input. For example, in the network

shown in Fig. 1, B = 30, and would be even if any edges had
infinite upper bounds.

Clearly a path flow decomposition to an IFD instance exists

if and only there is a flow solution 〈f(e)〉e∈E that meets all

flow interval constraints. Given an IFD instance in which the

flow intervals are all bounded, we can use a standard approach

based on maximum-flow that can find a flow solution that

conforms to all lower and upper bounds on edge flows, if one

exists. For completeness, we describe the approach: We define

a new set of flow variables 〈f ′(e)〉 satisfying
f(e) = le + f ′(e). (3)

We add a new edge (t, s) with l(t,s) = 0 and u(t,s) = B and

extend the conservation of flow requirement to s and t; thus
(t, s) will have flow F in any flow solution. For each vertex

v ∈ V (including s and t),
∑

e∈out(v)
f(e)−

∑

e∈in(v)
f(e) = 0. (4)

By (3) and (4),
∑

e∈out(v)
f ′(e)−

∑

e∈in(v)
f ′(e) =

∑

e∈in(v)
le −

∑

e∈out(v)
le

� exc(v). (5)

We create a flow network G′ = (V ′, E′) where V ′ = V ∪
{s′, t′}; s′ is a new source vertex and t′ is a new sink vertex.
We include all edges e ∈ E into E′ where the capacity of an
edge e ∈ E is set to ue − le. For any v ∈ V with exc(v) > 0,
we add an edge (s′, v) with capacity exc(v). Likewise, for
any v ∈ V with exc(v) < 0, we add an edge (v, t′) with
capacity −exc(v). Next, we find a maximum flow F ∗ in this
network (e.g., by using the Edmonds-Karp algorithm [7]; we

note the solution found will be integral since all constraints

are integers).

Lemma 4: The maxflow solution 〈f ′(e′)〉 saturates all edges
(s′, v) ∈ E′ (equivalently, all edges (v, t′) ∈ E′) if and only
if there is a flow solution 〈f(e)〉 to the IFD instance.

Proof: It is easy to see that
∑

v∈V exc(v) = 0, since each
edge e ∈ E contributes le and −le to the sum. Thus,

∑

v∈V :exc(v)>0

exc(v) =
∑

v∈V :exc(v)<0

−exc(v), (6)

and so the outgoing edges from s′ are saturated if and only
if the incoming edges to t′ are saturated. If this occurs, by
conservation of flow, (5) will be satisfied for all v ∈ V , and
so defining 〈f(e)〉 by (3) provides valid flow in the original
IFD network (since 0 ≤ f ′(e) ≤ ue − le for all e ∈ E and

the fact that (3) and (5) imply (4)). Conversely, a valid IFD

flow 〈f(e)〉 gives rise to a maximum flow in G′, 〈f ′(e)〉 by
defining f ′(e) = f(e)− le for e ∈ E and saturating all edges

incident to s′ and t′.

IV. PROPOSED IFD ALGORITHM

Lemmas 3 and 4 suggest the following strategy for solv-

ing the IFD problem: first compute upper bounds for all

unbounded edge constraints, then find a valid integer flow

solution, then decompose this flow into paths. We refine

this basic approach with several additional heuristics and

summarize it in Fig. 2.

1) Replace all unbounded flow intervals [a,∞) with
bounded intervals [a,B], where B is computed in

Equation (2).

2) Find a valid integer flow 〈f(e)〉 for the bounded
IFD instance (or report that no solution exists) by

solving an associated maxflow problem.

3) Heuristic 1: Modify the flow solution 〈f(e)〉 to
another feasible solution 〈f ′(e)〉 that potentially
requires fewer paths to decompose.

4) Decompose 〈f ′(e)〉 using an existing method such
as Greedy-Width or Catfish to obtain an initial path

solution (P,w).
5) Heuristic 2: Refine (P,w) in order to reduce |P |;
we search for opportunities to adjust the weights

on a pair of paths such that a third path becomes

unnecessary, or to splice paths such that one of the

resulting paths can be eliminated.

Fig. 2: The proposed IFD algorithm.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1910

We remark that this strategy is guaranteed to find a solution

when one exists but that this solution is not necessarily op-

timal. Since IFD generalizes the standard flow-decomposition

problem, it is at least as computationally hard; namely it is

NP-hard even if all flow values are taken from {1, 2, 4} [12]
and also does not admit a PTAS [30]. The running time of

each step is: Step 1: O(m) time, Step 2: O(n2m) time (using
Edmonds-Karp), Step 3: O(n2m) time per edge removed (see
below), Step 4: Greedy-Width: O(m + n lg n) time (using a
modification of Dijkstra’s algorithm), Catfish: O(m2n2|f ′|)
time, Step 5: O(|P |3) time. We next describe the heuristic
steps above in further detail.

A. Heuristic 1: Flow simplification

It may be possible to modify the initial flow 〈f(e)〉 produced
by Step 2. to create another feasible flow 〈f ′(e)〉 that requires
fewer paths to decompose. Lemma 3 provides an upper bound

on k∗ that depends linearly on the number of edges in the
graph. Thus, if we can modify the flow to use fewer edges, we

may reduce k∗. We define Cf = {e : le = 0, f(e) > 0} as the
set of candidate edges for elimination. To check if it is possible

to modify the flow solution f so that f(e) = 0 for some
e ∈ Cf , we make use of the previous maxflow instance and

modify the upper bound constraint for e to be ue = 0; again by
the Lemma 4, we can find a feasible flow with this additional

constraint if one exists. The full method is as follows:

1) Compute Cf = {e : le = 0, f(e) > 0} and Zf = {e′ :
f(e′) = 0}.

2) Order Cf by increasing f(e).
3) For each e ∈ Cf , check (using maxflow) if f ′ can
be found that satisfies the IFD instance with additional

constraints f ′(e) = 0 and f ′(e′) = 0 for all e′ ∈ Zf . If

yes, add e to Zf and go to 1.

B. Heuristic 2: Reducing the number of paths

We next describe several heuristics for reducing the number

of paths needed in the IFD solution. If the edge flow interval

bounds are somewhat slack, these opportunities are often

found (see §VI).

a) Rebalancing: Consider a triple of paths pi, pj and pk
that overlap as shown in Fig. 3. It is possible that the flows

on pi and pj can be adjusted such that pk can be eliminated.
For each pair of paths pi, pj , we compute the following:

fwd(i, j) � argmax
l≥0

pi[1 . . . l] = pj [1 . . . l]

rev(i, j) � argmax
l≥0

pi[len(pi)− l + 1 . . . len(pi)]

= pj [len(pj)− l + 1 . . . len(pj)] (7)

Next, for all triple of paths pi, pj , pk, we define:

lap(i, j, k) � fwd(i, k) + rev(j, k)− len(pk). (8)

If lap(i, j, k) > 0, then paths pi, pj and pk are as shown in
Fig. 3. Let

f−ijk(e) �
∑

pl∈P\{pi,pj ,pk},e∈pl

wl (9)

be the current flow on edge e, ignoring paths pi, pj and pk.
We first check if the flows wi and wj on paths pi and pj can

be adjusted so that all affected edge constraints remain satis-

fied. Then wi and wj must satisfy the following constraints:

wi ∈ [le − f−ijk(e), ue − f−ijk(e)], ∀e ∈ pi ∩ pj ,

wj ∈ [le − f−ijk(e), ue − f−ijk(e)], ∀e ∈ pi ∩ pj ,

wi + wj ∈ [le − f−ijk(e), ue − f−ijk(e)], ∀e ∈ pi ∩ pj .

Let

Lwi
= max

e∈pi∩pj

le − f−ijk(e),

Uwi
= min

e∈pi∩pj

ue − f−ijk(e),

Lwj
= max

e∈pi∩pj

le − f−ijk(e),

Uwj
= min

e∈pi∩pj

ue − f−ijk(e),

Lwi+wj
= max

e∈pi∩pj

le − f−ijk(e),

Uwi+wj
= min

e∈pi∩pj

ue − f−ijk(e).

Then, the above constraints are equivalent to the following:

wi ∈ [Lwi
, Uwi

],

wj ∈ [Lwj
, Uwj

],

wi + wj ∈ [Lwi+wj
, Uwi+wj

]. (10)

There exists an integer solution wi, wj that satisfies each of

the constraints in (10) if and only if Lwi ≤ Uwi , Lwj ≤ Uwj ,

Lwi+wj ≤ Uwi + Uwj , and Lwi + Lwj ≤ Uwi+wj . If all

these inequalities hold, then among feasible solutions w′, wk

we choose one that maximizes the distance to any constraint

with the idea that this may improve the chance of finding

subsequent path reductions.

b) Splice and Merge: If it is not possible to eliminate pk
by modifying the flow on pi and pj , then we next consider the
option of splicing pi and pj in the region they overlap. The
resulting path splice generates a path that agrees with pk (and
so can be merged with it) and a new path p′ that is defined
by

p′ � pj [1 . . . len(pj)− rev(j, k) + lap(i, j, k)]
+ pi[(fwd(i, k) + 1 . . . len(pi)]. (11)

pi

pj
pk

s t

Fig. 3: Path reduction opportunity: We may be able to (1)

adjust the flows on pi and pj so as to eliminate the need for
pk, or (2) splice pi and pj in the region they overlap so that one
of the resulting paths coincides with pk and can be merged;
this again requires checking if path flows can be found that

satisfy all edge flow constraints.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1911

Again, we would like to see if integers flow for paths p′ and
pk can be found so that all edge flow constraints are satisfied.
The formulation of this problem is identical to (10), so we

apply the same method as above.

We implement checking these path reduction options

in a subroutine, try-reduce(i, j, k). The full heuristic is a
follows: while there is an unchecked triple (i, j, k), call
try-reduce(i, j, k), if it finds a path-reduction operation among
paths pi, pj , and pk it performs it; thus reducing |P | by one.
Remove unchecked triples that involve the eliminated paths

and create new triples to check involving any new or modified

paths against current set of paths. Finally, we update the fwd

and rev tables along rows and columns corresponding to each

new path created by splicing.

c) Other Pairwise Opportunities: The final path-

reduction method is to consider just pairs of paths pi and pj
that have some overlap. We check if rebalancing is possible

by adjusting their path flows, such that the flow on one of

the paths can be reduced to zero and thus eliminated. We also

check if splicing the paths at a vertex where they overlap and

then rebalancing allows the flow on one of the paths to be

reduced to zero. This is also checked using the same approach

as above.

V. USING IFD FOR RNA TRANSCRIPT ASSEMBLY

As mentioned, there are variety of ways that the edge

weights in the splice graph can contain errors, and so it is

likely that real RNA read data sets will not yield a flow

in the splice graph. We consider two approaches to model

these errors and determine an IFD instance to solve in order

to obtain a set of paths (assembled transcripts) and weights

(abundances).

A. Confidence-based Flow Intervals

Suppose that the probability distribution of measured edge

weights in the splice graph is known, e.g. if the true flow

value on an edge is x, the measured flow value is distributed
according to some probability distribution Dx. For simplicity,

we assume that for each true flow value x, the measured edge
weight m is independently sampled from N (x, (εx)2), the
Gaussian distribution with mean x and standard deviation εx;
and then m is rounded to the nearest integer. The resulting

edge weights will no longer be a flow (with high probability),

and so existing flow decomposition methods cannot be directly

applied. To use IFD, we need to choose flow intervals for

each measured edge weight m. We numerically compute the
posterior distribution (assuming a uniform prior), i.e., for a

given m what is the probability that m was sampled from

N (x, (εx)2). We then compute a confidence intervals for each
m value, e.g., 95%. For example, if [l95(m), u95(m)] is the
computed 95% confidence interval for a measured edge weight

m, the true flow value falls in this interval with probability

0.95. Higher confidence intervals are larger, and so more likely
to yield a feasible IFD solution, but intervals that are too large

may allow too much flexibility and reduce solution fidelity if

too few paths are found. We explore this in § VI-B.

B. Minimum Cost Flow Intervals

We adapt the method of Tomsecu et al. [28], that considers
the problem of finding a flow that provides the best fit

to the experimental abundance data. A fitting-error function

ce() is specified for each edge e ∈ E. Common functions
include linear or sum-of-squares error. The objective is then

to determine a flow f on G such that
∑

e∈E ce(|a(e)− f(e)|)
is minimized. Let this flow be called ffit. For each edge e ∈ R,
let

Δ(e) = |a(e)− ffit(e)|. (12)

We then use the interval [a(e)−Δ(e), a(e)+Δ(e)] as the flow
constraint interval for edge e in the IFD instance. Note that if
each ce() is monotonic then any flow solution to the IFD will
have the same fitting-error as ffit. Some intervals found in this
way have le = ue, and so we also consider adding some slack

to these edges to promote the use of Heuristic 2. See §VI-C.

Tomsecu et al. find ffit by solving an associated minimum-
cost flow problem. The construction below is a slight sim-

plification of their approach: We suppose that a splice graph

G = (V,E) is given as input and that for each edge e, a(e)
is the experimentally determined abundance of transcripts that

traverse e. Source and sink nodes in G are also specified.

For convenience, we first add a new node x to G and edges

(x, s) and (t, x) to E, for each source s and sink t. We
let a(x, s) =

∑
e∈out(s) a(e) −

∑
e∈in(s) a(e) and a(t, x) =∑

e∈in(t) a(e) −
∑

e∈out(t) a(e). The node x will serve to

ensure that a balanced flow is achieved; we require that the

flow out of all sources equals the flow into all sinks. We

construct a supplemental flow network Gsup = (Vsup, Esup),
where Vsup = V ∪ {s′, t′, x}. For each e ∈ E, including the
newly created edges above, we add an edge esup to Esup and

let f(e) = a(e) + fsup(e); fsup(e) is the amount by which
a(e) must be supplemented (either positively or negatively) in
order to achieve an optimal flow. The cost of sending flow

on esup is given by ce(|fsup(e)|) and esup is provided infinite
capacity. For each v ∈ V ∪ {x}, we compute

a-exc(v) �
∑

e∈in(v)
a(e)−

∑

e∈out(v)
a(e).

In order to achieve conservation of flow at all vertices in the

final flow solution, we must have that
∑

e∈out(v)
fsup(e)−

∑

e∈in(v)
fsup = a-exc(v), (13)

for all v ∈ V ∪{x}. To achieve this at minimum cost, we create
following min-cost flow instance: If a-exc(v) > 0, add an edge
(s′, v) with capacity a-exc(v) > 0 and cost 0. Likewise, if
a-exc(v) < 0, add an edge (v, t′) with capacity −a-exc(v) > 0
and cost 0. The flow requirement is to send

A �
∑

v:a-exc(v)>0

a-exc(v)

units of flow from s′ to t′. We observe that A is the capacity

of both the cut (s′, Vsup \ s′) and the cut (Vsup \ t′, t′), thus
all outgoing edges of s′ and incoming edges of t′ must be

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1912

saturated to achieve the desired flow. If this flow is achieved,

it is easy to see that (13) will hold at each v ∈ V ∪ {x} and
so f will be a flow in G. As shown in [28], f minimizes the
fitting-error.

C. Identifying Sources and Sinks

Existing RNA transcript prediction methods based on flow

decomposition, such as Traph [28], Catfish [25] and Tobog-

gan [14] assume that the source and sink nodes are known

in the flow network. These nodes correspond to exons that

appear at the beginning or end of transcripts. While some

start/end exons may be clear (e.g., nodes for which there are

only outgoing/incoming edges with measured weights), this

is not a completely reliable method if, for example, an exon

appears at the beginning of one transcript and in the middle of

another. We propose a simple approach to identify sources and

sinks using IFD: create a new source node s∗ and sink node
t∗ and then, for all v ∈ V , add edges (s∗, v) and (v, t∗) to the
network, with associated flow constraint intervals of [0,∞).
Then, all v such that f(s∗, v) > 0 in the IFD solution are

sources, and all v such that f(v, t∗) > 0 in the IFD solution
are sinks.

VI. EXPERIMENTAL RESULTS

We tested our proposed IFD algorithm on splice graphs

constructed from simulated human transcriptomes, drawing

from the extensive test corpus used in two previous stud-

ies [13], [27]. This data consists of flow graphs generated

from simulated transcriptomes from three different species:

human, mouse, and zebrafish. Transcripts (paths) and their

abundances (weights) were simulated for each species using

Flux-Simulator [10], and these were superimposed to construct

splice graphs. (Reads were not used.) For this study, we

considered only the human data set, which had 524,212 splice

graph instances with at least two paths. These nontrivial

instances averaged 18.8 nodes, 22.6 edges, and 2.8 paths. We

simulated errors on the weights of the splice graph edges; see

§VI-A.

Because these reads were simulated from real gene data, the

simulated paths are considered to be a ground truth minimal

decomposition of paths for the resulting flow network. While it

may not always be the case that the simulated paths are in fact

a minimal decomposition (there could be a decomposition with

a smaller number of paths, using a different set of paths than

those that generated the flow graph), it was found in [13] that

in most cases (at least 99%), the simulated paths are indeed a

minimal decomposition for the network.

In order to measure the quality of the paths and weights

predicted by our algorithm, we compute the weighted Jaccard
similarity (WJS) between the groundtruth set of paths P ∗

and the predicted set of paths P . For each IFD instance, we
arbitrarily order the set of all paths in the union of P ∗ and
P and create vectors X∗ and X containing the corresponding

weights. If X∗ and X both have length n, then the weighted
Jaccard similarity between them is defined to be

WJS(X∗, X) =

∑n
i=1 minX∗[i], X[i]∑n
i=1 maxX∗[i], X[i]

.

WJS(X∗, X) ∈ [0, 1], with WJS(X∗, X) = 1 only when
the predicted paths and their weights exactly match the

groundtruth paths and their weights.

We implemented the IFD algorithm described in §IV in

Python, making use of some graph data structures and pro-

cessing functionality developed as part of Toboggan [14],

and using Google's OR-Tools [1] to solve min-cost flow and

maxflow instances. For simplicity and scalability, the Greedy-
Width algorithm [30] was used to construct the initial path

decomposition and as in [12] we use a modified version of

Dijkstra’s algorithm to find bottleneck paths. The Python code

and link to the data used to generate the results reported in

this section can be found at https://github.com/msu-alglab/ifd.

A. Simulating Data Errors

As discussed in §I, there are variety of ways that splice

graph edge weights can contain errors. To create data with

such errors, we assume that for each true flow weight x, the
actual measured edge weightm is independently sampled from

N (x, (εx)2), the Gaussian distribution with mean x and stan-
dard deviation εx; we assume the sample m is then rounded

to the nearest integer. For this experiment we fixed ε = 0.05.
The resulting edge weights will no longer be a flow (with

high probability) and so existing flow decomposition methods

cannot be directly applied. We investigate both confidence

interval and minimum cost flow interval approaches described

in §V-A and §V-B, respectively, in order to determine path

decomposition solutions.

B. Confidence Interval Experiment

To create IFD instances from flow graphs with errors, we

need to choose flow intervals for each measured edge weight

m. To use the method from §V-A, we numerically compute

the posterior distribution (assuming a uniform prior), i.e., for

a given m what is the probability that m was sampled from

N (x, (εx)2). For example, if [l95(m), u95(m)] is the computed
95% confidence interval for a measured edge weight m, the
true flow value falls in this interval with probability 0.95.
Our results are reported in Table I, by confidence interval.

Because not all instances are solvable at every confidence

level, and instances with larger |P ∗| are generally more
difficult to solve, we report the average WJS and |P | weighted
according to the distribution of |P ∗| in the full data set. The
best WJS is found when using a 95% confidence interval.

Surprisingly, the fewest paths are found using the one of

the smaller tested confidence intervals, 85%. One possible
reason for this is that the graphs with error that are solvable

with smaller intervals must have perturbed weights that are

close to the true weights, making them “easier” to solve.

Additionally, for those graph instances which have smaller

solutions for lower confidence intervals, it is often the case

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1913

that the initial solution found by Greedy-Width is smaller

for the lower confidence intervals than higher confidence

intervals. This suggests that a substituting a more accurate

method such as Catfish may reduce the number of paths found

at higher intervals. However, our ultimate goal is accurate

reconstruction of isoforms and abundances, which we measure

with WJS. Wider intervals are necessary to find solutions for

most instances. For example, a 90% confidence interval finds

solutions in less than half of our test cases. This is because

the test cases tend to have many edges (22.6 on average),

meaning that there are many opportunities for non-overlapping

intervals to be created in a graph, even when we expect that

each interval contains the true weight 90% of the time.

Though not reported in Table I, we also note that, as ex-

pected, Heuristic 2a (rebalancing) and Heuristic 2b (splice and

merge) occur more frequently as the interval size increases. At

all confidence levels tested, rebalancing occurred much more

frequently than splicing and merging. For example, at a 95%

interval, the weighted average of rebalances per solvable graph

instance was 0.96, while the weighted average of splice and

merges per solvable graph instance was 0.34.

TABLE I: Experimental results using a simulated human

transcriptomic data set with simulated errors. For varying

confidence intervals, we report the percentage of inputs for

which the IFD instance was solvable. For solvable instances

we also report the weighted average of weighted Jaccard

similarity scores and number of predicted paths.

confidence IFD weighted avg. weighted avg.
interval solvable WJS |P |
99% 99.9% 0.810 2.673
95% 83.3% 0.822 2.768
90% 46.6% 0.803 2.813
85% 36.4% 0.798 2.643
80% 32.8% 0.792 2.752

C. Minimum Cost Flow Interval Experiment

We next test the IFD algorithm using the minimum cost flow

method for generating intervals, as described in §V-B. We use

a linear fitting-error function for simplicity. After generating

intervals, we proceed with the five steps outlined in Fig. 2.

We refer to this method as mc-IFD. Because the intervals
are generated as [a(e) − Δ(e), a(e) + Δ(e)], they always
include the best fit flow for the measured graph according to

the specified fitting-error function. Thus, every IFD instance

created in this way is solvable. We compare the quality of

solutions found by our algorithm to the quality of solutions

found by setting the best-fit flow and then running Greedy-

Width, as in [28], which we refer to as the mc-fd method.
The minimum cost flow method for finding intervals gen-

erates many small intervals. In fact, on this data set, almost

every path found by Greedy-Width contains at least one edge

with le = ue. Because there is so little slack in some of

the intervals, no splice or rebalance opportunities are found

in this data set, so our results are nearly identical to those

found by the mc-fd method. The only differences come from

the differences in initial flow solution found by our maxflow

method, described in §III, and the min-cost flow used in

the mc-fd method. We also tested a widening heuristic for

such zero-width intervals according to the following rules: if

le = ue = 0, set le = 0, ue = 5. If le = ue > 0, reassign le
to be 0.8le and ue to be 1.2ue, both rounded to the nearest

integer. We refer to this as the mc-IFD+ method.

Our results are reported in Table II. We see that, by adding

some slack in the zero-width intervals, we are able to reduce

the number of paths found, though at the expense of a

very slightly lower WJS. Overall, the min-cost flow method

for finding intervals yields higher WJS than the confidence

interval method we test in the previous subsection, but requires

more paths.

TABLE II: Experimental results using a simulated human

transcriptomic data set with simulated errors. We compare the

weighted Jaccard similarity and number of paths found by

applying Greedy-Width to the minimum-cost flow found as

in [28] (mc-fd) with our IFD approach (mc-IFD). We also try

widening width-zero intervals in our IFD approach (mc-IFD+).

avg. avg.
method WJS |P |
mc-fd 0.902 4.387
mc-IFD 0.902 4.387
mc-IFD+ 0.882 4.120

D. Unknown Sources/Sinks Experiment

To test the ability of our method to recover the ground

truth paths and their abundances even when the source and

sink nodes are unknown, we remove the given source node

and then proceed as described in §V-C: we create new source

and sink s∗ and v∗, add edges from s∗ to all other nodes
and to t∗ from all other nodes with intervals [0,∞). Then,
we apply the confidence-based method for creating intervals.

Results are reported in Table III. For both the 95% and 85%
confidence levels (the best confidence levels to maximize

WJS or minimize |P | respectively in Table I), nearly all IFD
instances tested contained a flow (> 99%). Despite the true
starts and ends of transcripts being unknown, the IFD method

is able to achieve relatively high WJS.

TABLE III: Experimental results using IFD to recover paths

and weights in a splice graph where the sources and sinks are

unknown.

weighted avg. weighted avg.
method WJS |P |
95% 0.783 3.17
85% 0.770 4.33

VII. DISCUSSION

In this work we proposed the Inexact Flow Decomposition

problem and an algorithmic strategy for solving it based on

first finding a feasible flow, possibly modifying this flow, then

finding an initial path decomposition and refining that using

path splicing and merging. To our knowledge, ours is the first

algorithm for path decomposition to first find an initial solution

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



1914

and then attempt to improve it. Other heuristics might be effec-

tive for reducing the initial number of paths needed for an IFD

instance. We remark that it is possible to adapt the dynamic-

programming based FPT scheme of [13] to solve the IFD

problem on directed acyclic graphs (the only step that needs

modification is to incorporate the interval constraints into the

integer linear systems that are checked for feasibility, as path

solutions are found in each sub-problem). The IFD problem

may be of interest in other contexts such as transportation route

prediction [21] or telecommunications and computer network

routing [12], [30], where flow measurements might contain

errors or be inexact.

Our experimental results suggest that the IFD model has

promise for isoform assembly and quantification. In the pres-

ence of random errors on splice graph edges, our heuristic

algorithms predict paths and weights with high weighted Jac-

card similarity to the groundtruth paths and edges. However,

there are a number of future directions that would further the

IFD approach. The first of these would be the development

of biologically-based uncertainty values for the edge weights

in the graph. While many methods tend to account for these

biases in a static form, newer approaches by [19] and [2] have

developed methods that use observed characteristics within the

data to identify and correct for specific biases in the data in a

sample-specific manner. However, [19] is written specifically

for isoform quantification rather than splice isoform assembly

and [2] only accounts for read-mapping biases. A second

extension is the benchmarking of the IFD approach on both

simulated and real RNA-Seq short read data. This was outside

of the scope of this particular investigation as the focus was

on the development and assessment of the IFD algorithm on

splice graphs, but it is an important next step in validating the

usefulness of IFD for transcript assembly.

REFERENCES

[1] Google’s OR-Tools, developers.google.com/optimization.
[2] D. Aguiar, L.-F. Cheng, B. Dumitrascu, F. Mordelet, A. Pai, and

B. Engelhardt. Bayesian nonparametric discovery of isoforms and
individual specific quantification. Nature Communications, 9, 2018.

[3] C. Berge. Graphs. 1984.
[4] A. Conesa, P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera,

A. McPherson, M. Szcześniak, D. Gaffney, L. Elo, X. Zhang, et al. A
survey of best practices for RNA-Seq data analysis. Genome Biology,
17(1):13, 2016.

[5] C. Del Fabbro, S. Scalabrin, M. Morgante, and F. Giorgi. An extensive
evaluation of read trimming effects on Illumina NGS data analysis. PloS
One, 8(12):e85024, 2013.

[6] L. Ding, E. Rath, and Y. Bai. Comparison of alternative splicing junction
detection tools using RNA-Seq data. Current Genomics, 18(3):268–277,
2017.

[7] J. Edmonds and R. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM (JACM),
19(2):248–264, 1972.

[8] P. Engström, T. Steijger, B. Sipos, G. Grant, A. Kahles, T. Alioto, J. Behr,
P. Bertone, R. Bohnert, D. Campagna, et al. Systematic evaluation
of spliced alignment programs for RNA-Seq data. Nature Methods,
10(12):1185, 2013.

[9] T. Gatter and P. Stadler. Ryūtō: network-flow based transcriptome
reconstruction. BMC Bioinformatics, 20(1):190, 2019.

[10] T. Griebel, B. Zacher, P. Ribeca, E. Raineri, V. Lacroix, R. Guigó, and
M. Sammeth. Modelling and simulating generic RNA-Seq experiments
with the flux simulator. Nucleic Acids Research, 40(20):10073–10083,
2012.

[11] Y. Han, S. Gao, K. Muegge, W. Zhang, and B. Zhou. Advanced
applications of RNA sequencing and challenges. Bioinformatics and
Biology Insights, 9:BBI–S28991, 2015.

[12] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov. How to
split a flow? In INFOCOM, 2012 Proceedings IEEE, pages 828–836.
IEEE, 2012.

[13] K. Kloster, P. Kuinke, M. O’Brien, F. Reidl, F. Sanchez Villaamil,
B. Sullivan, and A. van der Poel. A practical FPT algorithm for
flow decomposition and transcript assembly. In 2018 Proceedings of
the Twentieth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 75–86. SIAM, 2018.

[14] K. Kloster, P. Kuinke, M. O’Brien, F. Reidl, F. Sanchez Villaamil,
B. Sullivan, and A. van der Poel. Toboggan: Version 1.0, June 2017.

[15] S. Kumar, A. Vo, F. Qin, and H. Li. Comparative assessment of methods
for the fusion transcripts detection from RNA-Seq data. Scientific
Reports, 6:21597, 2016.

[16] N. Lahens, I. Kavakli, R. Zhang, K. Hayer, M. Black, H. Dueck,
A. Pizarro, J. Kim, R. Irizarry, R. Thomas, et al. IVT-seq reveals extreme
bias in RNA sequencing. Genome Biology, 15(6):R86, 2014.

[17] L. Manley, D. Ma, and S. Levine. Monitoring error rates in Illumina
sequencing. Journal of Biomolecular Techniques, 27(4):125, 2016.

[18] J. Mattick and J. Rinn. Discovery and annotation of long noncoding
RNAs. Nature Structural & Molecular Biology, 22(1):5, 2015.

[19] A. McDermaid, X. Chen, Y. Zhang, J. Xie, C. Wang, and Q. Ma.
GeneQC: A quality control tool for gene expression estimation based
on RNA-sequencing reads mapping. BioRxiv, page 266445, 2018.

[20] J. Mehta. Sequencing small RNA: introduction and data analysis
fundamentals. In RNA Mapping, pages 93–103. Springer, 2014.

[21] S. Micka and B. Mumey. The minimum road trips problem. In Fall
Workshop on Computational Geometry, pages 1–4, 2017.

[22] B. Mumey, S. Shahmohammadi, K. McManus, and S. Yaw. Parity
balancing path flow decomposition and routing. In Globecom Workshops
(GC Wkshps), 2015 IEEE, pages 1–6. IEEE, 2015.

[23] S. Parekh, C. Ziegenhain, B. Vieth, W. Enard, and I. Hellmann. The
impact of amplification on differential expression analyses by RNA-Seq.
Scientific Reports, 6:25533, 2016.

[24] M. Pertea, G. Pertea, C. Antonescu, T.-C. Chang, J. Mendell, and
S. Salzberg. StringTie enables improved reconstruction of a transcrip-
tome from RNA-Seq reads. Nature Biotechnology, 33(3):290, 2015.

[25] M. Shao and C. Kingsford. Catfish. https://github.com/Kingsford-
Group/catfish.

[26] M. Shao and C. Kingsford. Scallop enables accurate assembly of
transcripts through phasing-preserving graph decomposition. BioRxiv,
page 123612, 2017.

[27] M. Shao and C. Kingsford. Theory and a heuristic for the minimum
path flow decomposition problem. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 16(2):658–670, 2017.

[28] A.. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen. A novel min-
cost flow method for estimating transcript expression with RNA-Seq. In
BMC Bioinformatics, volume 14, page S15. BioMed Central, 2013.

[29] C. Trapnell, B. Williams, G. Pertea, A. Mortazavi, G. Kwan,
M. Van Baren, S. Salzberg, B. Wold, and L. Pachter. Transcript assembly
and quantification by rna-seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nature biotechnology, 28(5):511,
2010.

[30] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey. Simple bounds
and greedy algorithms for decomposing a flow into a minimal set of
paths. European Journal of Operational Research, 185(3):1390–1401,
2008.

[31] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool
for transcriptomics. Nature Reviews Genetics, 10(1):57, 2009.

[32] C. Williams, A. Baccarella, J. Parrish, and C. Kim. Trimming of
sequence reads alters RNA-Seq gene expression estimates. BMC
Bioinformatics, 17(1):103, 2016.

Authorized licensed use limited to: Montana State University Bozeman. Downloaded on August 26,2020 at 22:57:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


