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ABSTRACT
The MEDLINE database provides an extensive source of scientific
articles and heterogeneous biomedical information in the form of
unstructured text. One of the most important knowledge present
within articles are the relations between human proteins and their
phenotypes, which can stay hidden due to the exponential growth
of publications. This has presented a range of opportunities for the
development of computational methods to extract these biomedical
relations from the articles. However, currently, no such method
exists for the automated extraction of relations involving human
proteins and human phenotype ontology (HPO) terms. In our pre-
vious work, we developed a comprehensive database composed
of all co-mentions of proteins and phenotypes. In this study, we
present a supervised machine learning approach called PPPred
(Protein-Phenotype Predictor) for classifying the validity of a given
sentence-level co-mention. Using an in-house developed gold stan-
dard dataset, we demonstrate that PPPred significantly outperforms
several baseline methods. This two-step approach of co-mention
extraction and classification constitutes a complete biomedical rela-
tion extraction pipeline for extracting protein-phenotype relations.

CCS CONCEPTS
• Computing methodologies → Information extraction; Su-
pervised learning by classification; • Applied computing →
Bioinformatics.
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1 INTRODUCTION
Proteins are one of the most critical biomolecules for the devel-
opment and maintenance of life [3]. A cell’s full complement of
expressed proteins, the proteome, is both dynamic and multidimen-
sional with many proteins operating in a complex network ensuring
the integrity of cellular structure and function [20]. Changes in
critical regions of a protein’s structure often caused by errors in the
underlying genetic sequence of the protein or in its regulation can
alter the protein’s function-specific 3D structure, resulting in an
alteration of phenotype [11]. In the medical context, a phenotype
can be characterized as a deviation from normal morphology or
behavior [32]. Well known alterations in phenotype brought about
by changes in one or more proteins or their regulation involved in
important biological pathways include Alzheimer’s disease, Parkin-
son’s disease, Huntington’s disease, cancer, cystic fibrosis and type
II diabetes [3, 12, 25]. Uncovering novel changes in protein structure,
function and regulation, and understanding how these alterations
lead to human disorders is a very active area of research in the
biological community [3, 5, 11, 12, 20, 25, 31, 35].

Human Phenotype Ontology (HPO) is a standardized vocabulary
that includes a wide range of phenotypic abnormalities observed
in human diseases [17]. HPO is composed of five sub-ontologies
among which Phenotypic abnormalities is the main sub-ontology
that describes clinical abnormalities. Each sub-ontology includes
HPO terms and associated HPO Identifiers (IDs), e.g. Parkinson-
ism, HP:0001300. Each sub-ontology is organized in a hierarchical
structure where more general terms are close to the top while more
specific terms are closer to the bottom. Each pair of terms in the
hierarchy are linked with a is-a relationship. In this paper, we use
phenotypes andHPO terms, interchangeably. HPOwebsite1 provides
gold-standard annotations for a large collection of human proteins
through biocuration, which is the process of extracting knowledge
from unstructured text and storing the data in knowledge bases.
However, currently, only a small portion of known human proteins
have HPO annotations [17]. But, it is believed that there are many
other human proteins that are associated with diseases and hence

1https://hpo.jax.org/app
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Figure 1: An example of a bad co-mention in which the sentence does not convey a relation between the protein, i.e. “KIF4",
and the phenotype, i.e. “cancer". (PMID: 20711700)

should be annotated with HPO terms (Peter Robinson, personal
communication, 2015).

Continuing to expand the knowledgebases such as HPO data-
base through biocuration is of utmost importance for potential
future downstream applications in medicine and healthcare. How-
ever, biocuration, which is usually performed manually with the
help of computational tools [9], is generally considered tedious and
resource-consuming. Hence, efficient and accurate computational
tools are required to expedite the process in order to bridge the gap
between the typically slower rate of human annotation versus the
vast and exponentially-increasing amount of literature concerned
with the subject [9]. As a result, developing computational models
to extract relations between proteins and phenotypes has gained
recent interest among scientists working in the field of biomedi-
cal natural language processing [10, 16, 18, 37]. However, to the
best of our knowledge, no such computational methods exist for
automatically extracting human protein-HPO term relations from
biomedical literature. In this paper, we use the terms “relations”
and “relationships”, interchangeably.

As a solution to the above, we propose a two-step approach
for extracting human protein-HPO term relations. The first step
is to extract protein-HPO co-mentions, which are co-occurrences
of protein names and phenotype names in a certain span of text
i.e. a sentence, a paragraph, etc [16]. In our previous work, we
developed ProPheno2, which is an online and publicly accessible
dataset composed of proteins, phenotypes (HPO terms), and their
co-occurrences (co-mentions) in text which are extracted from
Medline abstracts and PubMed Central (PMC) Open Access full-
text articles using a sophisticated in-house developed text mining
pipeline [29]. This dataset covers all terms in the Phenotypic abnor-
mality sub-ontology. However, a knowledge-free Natural Language
Processing (NLP) pipeline extracts every co-mention of proteins
and phenotypes, but not all protein-phenotype co-mentions simply
imply that there is a relationship between the two entities (see
Figure 1 for an example).

Therefore, in the second step, extracted co-mentions are filtered
using a co-mention classifier that can distinguish between good
and bad co-mentions. We define a co-mention as a good co-mention
if there is enough evidence conveyed in the corresponding span
of text indicating a relationship between the protein and the phe-
notype. In other words, a good co-mention is a valid relationship
between the two entities according to the meaning of the context
text. Figure 2 depicts an example of a good co-mention of a protein
and a phenotype in a sentence. The combination of a co-mention

2http://propheno.cs.montana.edu

extractor and co-mention classifier/ filter constitutes a complete
relation extraction pipeline.

The development of PPPred (Protein-Phenotype Predictor), a
novel co-mention classifier for classifying protein-phenotype co-
mentions, is the primary focus of the work presented in this paper.
We first randomly select a subset of co-mentions from the ProPheno
database and have them curated through two biologists. This gold-
standard dataset is composed of 809 human protein-HPO term
co-mentions annotated with binary labels of good/ bad. Then we
use this gold-standard dataset for developing predictive models
using machine learning techniques. Our machine learning models
employ a large collection of both syntactic and semantic features.
Finally, we demonstrate that PPPred significantly outperforms other
baseline methods on the task of protein-HPO terms co-mention
classification.

The main contributions of the paper are as follows. This is the
first analysis of the problem of human protein-HPO term relation
extraction from biomedical literature. We model this relation extrac-
tion task as a two-step process composed of co-mention extraction
and classification. We formulate the co-mention classification prob-
lem as a supervised learning problem using the gold-standard data
generated by biologists. This is also the first such gold-standard
data for human protein-HPO term relation extraction and is made
publicly available3. A filter or a classifier that could identify good
co-mentions can be used by annotators to significantly speed up
the biocuration process. In addition, this can be used to provide
much higher quality co-mentions as input to other downstream ap-
plications such as human protein-HPO term prediction [28], which
would likely lead to better predictions.

The rest of the paper is organized as follows. Section 2 provides
a brief background on the related work in this area. The proposed
method is discussed in Section 3. Section 4 discusses the results of
running this method and compares the results with other methods
and provides a discussion on the results. Finally, Section 5 concludes
the study and discusses future work and open problems.

2 RELATEDWORK
The main approaches for biomedical relation extraction include
co-occurrence-based methods, rule-based methods, and machine
learning-based methods. Co-occurrence methods simply look for
any co-mention of the two entities of interest in a particular span of
text, e.g. sentence, paragraph, etc., and usually provide low precision
and high recall values [4]. Rule-based methods define linguistic
patterns and extract the relations using the patterns [1, 13, 22, 26,
30]. The rules can be derived from manually annotated corpora

3https://github.com/MSU-KAHANDA-LAB/protein-phenotype-relation-extraction
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Figure 2: An example of a sentence-level protein-phenotype co-mention which is extracted from the article PMID: 798461.

usingmachine learning algorithms or definedmanually by a domain
expert. Several studies focus on employing lexical analyzers and
parsers to identify the relations between entities [7, 34, 38, 39].
For example, Yakushiji et al. introduce a full parser for analyzing
biomedical text using a general-purpose parser [39].

Machine learning-based approaches are also employed for the re-
lation extraction from biomedical text [16, 19, 21, 36]. The machine
learning category includes methods based on feature engineering,
graph kernels, and deep learning. Support Vector Machines (SVMs)
have shown high performance in biomedical relation extraction, but
they need feature engineering which is a skill-dependent task [40].
Kernel-based methods also require designing suitable kernel func-
tions. Deep neural network-based methods eliminate the need for
feature extraction and defining rules, and provide state-of-the-art
on various tasks in biomedical relation extraction [27, 40]. How-
ever, they typically require very large data sets compared to other
traditional machine learning models.

Craven presents a machine learning method for mapping infor-
mation from Medline abstracts to knowledge bases [8]. Katrenko
and Adriaans propose a method that uses syntactic information
and can be used with various machine learning methods [15]. Su-
pervised and unsupervised methods have also been employed in
different studies that show improvement in the relation extraction
task [2, 18, 23, 33].

Khordad and Mercer introduce a machine learning method for
identifying genotype-phenotype relations which uses a semi au-
tomatic approach for annotating more sentences to enlarge the
training set [16]. Extracting the relations between genotypes and
phenotypes can also be performed by combining molecular and
phenotypic information [10].

Despite a large number of studies conducted on extracting en-
tity relations from the biomedical literature (including a handful
of methods for extracting relations between genes/proteins and
phenotypes), no methods exist specifically for human protein-HPO
term relation extraction. Therefore, to the best of our knowledge,
this is the first study on the problem of protein-HPO term relation
extraction from biomedical literature and the PPPred is the first such
method. We note that GenePheno [14] is the only related method
that uses an ontology-based approach to extract gene-phenotype
associations from the literature. It first recognizes all mentions of
gene and HPO terms within sentences in the whole corpora and
then uses a co-occurrence based metric for ranking those pairs.
Highest ranked pairs are predicted as gene-phenotype associations.
While GenePheno does not predict top-ranked relations (i.e. sen-
tences), we still use it as one of the baseline methods due to the
close proximity of the problem solved by their method and the
task of protein-phenotype co-mention classification addressed by
PPPred.

3 METHODOLOGY
3.1 Approach
In this work, we formulate the task of co-mention classification as
a supervised learning problem as described below.

Given a context C = w1w2..e1..w3..e2..wn−1wn composed of
wordswi and the two entities e1 and e2, we define a mapping fR (·)
as:

fR (T (C)) =

{
1 if e1and e2 are related according to R
0 otherwise,

where T (C) is a high-level feature representation of the context, e1
and e2 are the entities representing the protein and the phenotype
and R is the relation that represents the protein-phenotype relation-
ship between the two. An example is considered a positive example
if the meaning of the context suggests that the protein mentioned
has this function (i.e. a good co-mention). Otherwise, it is labeled
as a negative example.

In this work, the contextC is a single sentence (i.e., the sentence
containing the mentions of the two entities). Figure 2 depicts a
sentence which is labeled as a positive example (i.e., fR = 1) because
it provides evidence for the relationship between the two entities
“Insulin" (protein) and “Atherosclerosis" (phenotype). Wemodel this
problem as a supervised learning problem and use binary classifiers
for learning fR .

Figure 3 depicts the overview of the PPPred pipeline, which is
capable of classifying sentence-level co-mentions of proteins and
phenotypes from biomedical literature. In this figure, we start by
inputting a set of sentences that contain co-mentions of proteins and
phenotypes. The preprocessing step is comprised of tokenization,
removing punctuations and stop words, and stemming. In the next
step, we extract features from the input sentences and train the
model which is able to extract the relations. The steps are discussed
in detail in the following sections.

3.2 Dataset
The first step in building a co-mention classifier is to create a
manually-annotated gold-standard dataset of co-mentions of pro-
teins and phenotypes. For this purpose, we use ProPheno 1.0 [29],
which is a dataset of proteins-phenotypes extracted from the entire
biomedical literature. This dataset maps the proteins and pheno-
types to the corresponding UniProt4 IDs andHPO IDs.We randomly
select a dataset of 809 sentence-level co-mentions of proteins and
phenotypes from ProPheno. This dataset is then annotated by two
biologists to generate the gold-standard dataset. The annotators
were provided instructions to label a co-mention as good/ positive

4https://www.uniprot.org
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Figure 3: The Pipeline of the Proposed Method

Table 1: The class distribution in the gold standard dataset

Good Bad Total
Sentences from abstracts 169 147 316
Sentences from full-texts 348 145 493
All sentences 517 292 809

if the sentence conveys that the protein and the phenotype has a
relationship. Otherwise, the co-mention was labeled bad/negative.

Figure 4: Distribution of depth of HPO terms in the anno-
tated co-mention data

Table 1 shows the distribution of co-mention types in the gold-
standard dataset. According to the Table 1, 39% of sentences are
extracted from the abstracts and 61% are from the full-text articles.
Among the sentences from the abstracts, 53% are labeled as “good"
and 47% are labeled as “bad". The distribution for the sentences from
the full-text articles is 70% and 30% “good" vs. “bad", respectively.
The overall class distribution is 64% and 36% for “good" and “bad",
respectively. The inter-annotator agreement is calculated using the
Cohen’s Kappa statistic [24] and the corresponding value is 0.64
that shows substantial agreement.

Tables 2 and 3 show the most frequent phenotypes and proteins
in the dataset, respectively. According to the tables, 15% of the
sentences mention the protein ”Receptor tyrosine-protein kinase
erbB-2" (P04626) and 43% of the sentences discuss the HPO term
“Neoplasm" (HP:0002664) (other names: “Cancer" or “Tumour").
Table 4 also demonstrates the most frequent protein-phenotype

Table 2: Most frequent HPO terms mentioned in the dataset

Index HPO ID HPO Term Depth Frequency
1 HP:0002664 Neoplasm 2 348
2 HP:0003002 Breast carcinoma 5 69
3 HP:0001909 Leukemia 4 24
4 HP:0002861 Melanoma 4 21
5 HP:0000855 Insulin resistance 5 15

Table 3: Most frequent proteins mentioned in the dataset

Index UniProt ID Protein Name Freq.
1 P04626 Receptor tyrosine-protein ki-

nase erbB-2
120

2 Q9Y617 Phosphoserine aminotrans-
ferase

45

3 O14788 Tumor necrosis factor ligand su-
perfamily member 11

23

4 P01308 Insulin 20
5 P03971 Muellerian-inhibiting factor 14

pairs mentioned in the dataset. We observe that 10% of the co-
mentions in the dataset mention above protein-phenotype pair,
which shows this pair is a well-studied protein-phenotype pair.
Figure 4 depicts the distribution of the depths of HPO terms in the
gold-standard.

3.3 Preprocessing
In the next step, we perform preprocessing on the sentences, which
is basically employing tokenization, and removing highly frequent
words from sentences (stop words), and also performing lemmati-
zation. In this step, we replace protein and phenotype entities by
PROT and PHENO, respectively. This replacement helps us to keep
track of the actual labels when the sentence contains more than
one entity with the same name and helps to avoid confusion when
the entity names contain more than one word.

3.4 Feature Extraction
We define the following items as the features for classification.
These features are categorized into three major types, i.e. bag-of-
words, engineered features, and distantly supervised (DS) features.

3.4.1 Bag-of-words (BoW) Feature. Here each feature is a token
from the context sentence while the feature value is their corre-
sponding frequency.
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Table 4: Most frequent protein-HPO term pairs mentioned in the dataset

Index UniProt ID HPO ID Protein Name HPO Term Frequency
1 P04626 HP:0002664 Receptor tyrosine-protein kinase erbB-2 Neoplasm 79
2 Q9Y617 HP:0002664 Phosphoserine aminotransferase Neoplasm 42
3 P04626 HP:0003002 Receptor tyrosine-protein kinase erbB-2 Breast carcinoma 31
4 P09486 HP:0002664 SPARC Neoplasm 9
5 P21860 HP:0002664 Receptor tyrosine-protein kinase erbB-3 Neoplasm 8

3.4.2 Engineered Features. We obtained these features based on
(1) domain expertise and (2) informative features used with similar
relation extraction problem [21]. The full list of engineered features
and their value type (within parentheses) is as follows:

(1) Shortest dependency path between PROT and PHENO in
the dependency graph of the sentence (integer).

(2) The head words of PROT and PHENO in the sentences
(string).

(3) Part-of-speech tags of the entities and next tokens of entities
in the sentences (string).

(4) The number of tokens in sentences (integer).
(5) Existence of interaction words acquired from a study by

Chowdhary et al [6] (boolean).
(6) Existence of seven trigger words provided by biologists, e.g.

“provide", “improve", “confer", etc (boolean).
(7) Position of PROT in the sentence (integer).
(8) Position of PHENO in the sentence (integer).
(9) Tokens before and after PROT and PHENO (string).
(10) Whether PROT is mentioned before PHENO in the sentence

(boolean).
(11) Existence of doubt in the sentence, e.g. “may", “might", etc

(boolean).
(12) Existence of negation words such as “no", “not", etc (boolean).

3.4.3 DS Features. We obtained the DS features by utilizing (1)
the full set of co-mentions (i.e. unlabeled) available in ProPheno,
and (2) the annotations available in the HPO database, which we
call the silver-standard (SS). These features are listed in detail as
follows:

(1) Number of co-mentions containing the protein name (inte-
ger).

(2) Number of co-mentions containing the phenotype name
(integer).

(3) Number of co-mentions containing both protein and pheno-
type name (integer).

(4) Normalized number of co-mentions containing the protein
name (float).

(5) Normalized number of co-mentions containing the pheno-
type name (float).

(6) Normalized number of co-mentions containing both protein
and phenotype name (float).

(7) Number of pair-specific co-mentions containing the protein
name (integer).

(8) Number of pair-specific co-mentions containing the pheno-
type name (integer).

(9) Number of pair-specific co-mentions containing both protein
and phenotype name (integer).

(10) Normalized number of pair-specific co-mentions containing
the protein name (float).

(11) Normalized number of pair-specific co-mentions containing
the phenotype name (float).

(12) Normalized number of pair-specific co-mentions containing
both protein and phenotype name (float).

(13) Number of annotations in SS for the protein (integer).
(14) Number of annotations in SS for the phenotype (integer).
(15) Annotation score for the protein and the phenotype in SS (0

or 1).
(16) Number of propagated annotations in SS for the protein

(integer).
(17) Number of propagated annotations in SS for the phenotype

(integer).
(18) Propagated annotation score for the protein and the pheno-

type in SS (0 or 1).

We normalize the number of co-mentions containing protein
name, phenotype name, or a pair of protein-phenotype by dividing
their frequencies by the number of unique articles that contain that
specific protein, phenotype, or pair, respectively. We also propagate
the HPO annotations upward toward the root nodes by using the
true path rule that means if an HPO term has an annotation with
a specific protein, all of its ancestors are also annotated with that
protein.

3.5 Experimental Setup
The scikit-learn5 package is used for implementing the classifier
functionality. We normalize the feature vectors using the L2 norm.
In a preliminary analysis, we compared various supervised learning
algorithms such as SVM, Naïve Bayes, Decision Trees, K-Nearest
Neighbors (KNN), and Gradient Boosting Trees (GBT) using their
default parameter settings. We select SVM with Linear kernel for
the rest of our experiments. We perform 10-times 5-fold cross-
validation for evaluating themodels. The performances are reported
primarily using F-max (the optimal F-1 value). Precision and Recall
at F-max are presented as well. Precision is the fraction of true pos-
itives over all the predicted positives, whereas recall is the fraction
of true positives over all the actual positives. F-1 is the harmonic
mean of precision and recall.

We compare PPPred with three baselines: (1) a strict rule-based
method (rule-based 1), (2) a lenient rule-based method (rule-based
2), and (3) GenePheno [14]. The rule-based 1 method was devel-
oped in-house by a biologist using broad domain knowledge of
the language used when describing alterations in protein sequence,

5https://scikit-learn.org/
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activity, regulation and the resulting phenotypic changes. Com-
monly used words for sequence-based alterations included “muta-
tion", “deletion" and “insertion". For protein expression changes, the
phrases “upregulation", “upregulates", “downregulation", “down-
regulates", “over-expression", “under-expression", “switches off",
“switches on", “amplifies" and “enhances" were chosen. For direct
protein-phenotype relationship descriptions, the phrases “associ-
ated with", “triggered by" and “caused by" were used. This method
assigns a score of 1 to co-mentions satisfying at least one of the
following rules (and 0 otherwise):

• PROT (upregulation/ downregulation/ over-expression/ under-
expression/ mutation) causes/ does not cause/ is (not) asso-
ciated with PHENO

• some other entity (upregulates/ downregulates/ silences/
inhibits/ switches off/ switches on/ triggers/ activates/ am-
plifies/ over-expresses/ under-expresses / enhances) PROT
causing/ which causes/ which is associated with PHENO

• PEHNO is (not) associated with/ triggered/ caused by (up-
regulation/ downregulation/ mutation/ deletion/ insertion/)
in PROT

• Mutation/ deletion/ insertion in PROT causes/ is associated
with PHENO

The rule-based 2 method is lenient than the rule-based 1 method
because it only checks whether any of the keywords in the rule-
based 1 method is in the sentences. In other words, this method
assigns a score to a co-mention based on the keyword(s) present
in the sentence. The order or the position of the keywords (with
respect to PROT and PHENO entities) are not considered.

GenePheno [14] is an ontology-based text mining method for
predicting gene-phenotype associations using literature. While ac-
knowledging this is not an apples-to-apples comparison, we per-
form the following in order to adapt it as a baseline. For each
co-mention in our gold-standard, if the corresponding pair of the
protein and the phenotype exists in the pre-generated GenePheno
output file6, we consider it as a positive prediction (otherwise neg-
ative). We incorporate the NPMI (Normalized Pointwise Mutual
Information) scores provided by GenePheno for each co-mention
as the confidence scores for the predictions. Note that due to the
possibility of the GenePheno method having access to some or all
of the co-mentions from our test set, the performance we report is
likely an over-estimation.

4 RESULTS AND DISCUSSION
Table 5 demonstrates the F-max, precision at F-max, and recall at
F-max values of various supervised learning algorithms. We ob-
serve that the Linear SVM and Gradient Boosting Trees algorithms
achieve best the F-max value (0.8). In addition, the Decision Trees,
Naïve Bayes, and K-Nearest Neighbors algorithms provide F-max
values of 0.78, 0.79, and 0.78, respectively. However, by comparing
the precision values, we realized that Linear SVM and Gradient
Boosting Trees provide higher precision values. Since Linear SVM
is one of the top models among all the models we compared, we
use that for the rest of our experiments.

6https://zenodo.org/record/2532614

Table 5: Comparison of various machine learning algo-
rithms using default parameter settings. Performance eval-
uated using 5-fold cross-validation and the results reported
using F-max and precision/ recall at F-max.

Model Precision Recall F-max
Linear SVM 0.69 0.95 0.8
Decision Trees 0.64 0.99 0.78
Naïve Bayes 0.67 0.97 0.79
K-Nearest Neighbors 0.64 1.0 0.78
Gradient Boosting Trees 0.69 0.95 0.8

Table 6: Comparison of PPPred (uses SVMs with Linear ker-
nel) against several baseline methods. Performance evalu-
ated using 5-fold nested cross-validation and the results re-
ported using F-max and precision/ recall at F-max. *F1 score
reported in-place of F-max due to the lack of confidence
scores for Rule-based 1 method.

Method Precision Recall F-max
Rule-based 1 0.71 0.26 0.38*
Rule-based 2 0.63 1.0 0.78
GenePheno 0.63 1.0 0.78
Linear SVM 0.69 0.95 0.8

Table 6 shows the comparison of the results of running PPPred
against two rule-based methods and GenePheno. We observe that
rule-based 2 and GenePheno obtain similar values for precision,
recall, and F-max, whereas Linear SVM produces a higher F-max
value. Linear SVM also achieves higher precision value than the
rule-based 2 and GenePheno methods. Due to the lack of confidence
scores for the rule-based 1 method, we report the F1-score instead
of F-max. We performed the paired T-test on the values to com-
pare the significance of the difference between F-max values. We
observed that Linear SVM significantly outperforms other methods
by achieving a p-value of 4.3E-13.

Figure 5 provides a comparison between the effectiveness of var-
ious features on the sentences from the abstracts, full-text articles,
and all sentences. The results suggest that we obtain better perfor-
mance using the co-mentions from the sentences extracted from
the full-text articles in comparison with the sentences extracted
from the abstracts. The precision values of co-mentions extracted
from full-text articles are higher than the values obtained by the
abstracts. In other words, the co-mentions extracted from full-text
articles could be a valuable source of information for relation extrac-
tion. The next observation is that BoW features often provide good
performance in terms of precision, recall, and F-max that indicates
the BoW features are an essential feature for relation extraction.
Engineered features provide higher precision in comparison with
DS features, whereas the DS features achieve higher recall values.
This observation suggests that these two sets of features can be
used as complementary features for relation extraction.

We investigate whether the training set suitably represents the
problem by employing the learning curve with training sizes 20%-
90% of the data and predicting on the holdout 10% of the data.
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Figure 5: Comparison of the effectiveness of various features usedwith PPPred (uses SVMswith Linear kernel) on the sentences
from abstracts, full-text articles, and all sentences. Performance evaluated using 5-fold nested cross-validation and the results
reported using F-max and precision/ recall at F-max.

Table 7: False Positives

Sentence Protein Phenotype
Moreover it should be taken into account that the PROT level does not always correlate well with the
PHENO burden and that there are numerous examples of metastatic PCa in the absence of significantly
elevated PSA levels, particularly when the tumours are poorly differentiated [36].

PSA tumour

Our findings, which demonstrated prognostic value of p-eIF2 in PHENO, are partially consistent with this
previous research, because PROT is also involved in the PERK-p-eIF2 signaling pathway and predicts better
DFS in patients with breast cancer.

CHOP breast cancer

Table 8: False Negatives

Sentence Protein Phenotype
Pedigree analyses of five families in which a form of spinocerebellar PHENO (SCA1) is present have been
used to obtain additional information on the location of PROT on chromosome 6.

SCA1 ataxia

The ratio of free to total PROT may increase the specificity of single serum PSA evaluations without
decreasing its sensitivity for the diagnosis of prostate PHENO.

PSA cancer

Figure 6 depicts the learning curve with the mentioned training
sizes. The increasing value of F-max shows that the dataset is under-
representative of the problem and we need more training data.

Relatively low precision values observed using the Linear SVM
algorithm suggest that we have many false positives. Therefore,
to investigate the possible reasons for this observation, we picked
the top five false positives (sentences which are predicted as “good”
with the highest confidence scores by the model whereas their
actual labels are “bad”) of which the top two are shown in Table 7.
We also picked the top five false negatives (co-mentions predicted as
negatives with the lowest confidence scores, whereas their actual
labels are positive) of which top two are shown in Table 8. By
comparing the above sentences, we observe that the length of false
negative and false positive sentences is similar and cannot be used
as a criterion to differentiate between the co-mentions. Additionally,

we observed that most of the phenotypes in the selected sentences
are “cancer" or related to “cancer". Therefore, the type of entities
does not fully distinguish between good and bad co-mentions and
requires further investigation.

5 CONCLUSION AND FUTUREWORKS
In this study, we created a co-mention classifier/filter which is capa-
ble of distinguishing between good and bad co-mentions of proteins
and phenotypes in sentences. We created a pipeline in which we
perform preprocessing on manually-annotated sentence-level co-
mentions of proteins and phenotypes, and by training a model on a
set of features extracted from the sentences, we are able to classify
the sentences comprising co-mentions of proteins and phenotypes.
This classifier can be employed to perform relation extraction on
protein and phenotype entities mentioned in biomedical literature.
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Figure 6: Learning curve with sizes 20%-90% of the data

We observed that Linear SVM provides the best F-max score using
five-fold cross-validation.

Nevertheless, there is still a lot of avenues to work in this area.
We utilized syntactic features extracted from sentences, however,
a potential future work is to use more specific syntactic features
from sentences, e.g. the shape of the dependency graph. We also
plan to do the classification on positive relations, negative relations,
and no relations between entities to be able to extract more specific
relations from biomedical literature by converting the problem into
a multi-class classification. We also plan to apply deep learning
and word embeddings to this dataset. We plan to incorporate the
section titles, e.g. Introduction, Conclusion, etc., to employ only
the more informative sentences. We also plan to utilize features
based on the soft similarity between sentences and in the future,
we are going to expand the study and include larger spans of text,
i.e. paragraphs and documents.
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